
AnyBlox: A Framework for Self-Decoding Datasets
Mateusz Gienieczko

Technical University of Munich
Munich, Germany
giem@in.tum.de

Maximilian Kuschewski
Technical University of Munich

Munich, Germany
maximilian.kuschewski@tum.de

Thomas Neumann
Technical University of Munich

Munich, Germany
neumann@in.tum.de

Viktor Leis
Technical University of Munich

Munich, Germany
leis@in.tum.de

Jana Giceva
Technical University of Munich

Munich, Germany
jana.giceva@in.tum.de

ABSTRACT
Research advancements in storage formats continuously produce
more efficient encodings and better compression rates. Despite this,
new formats are not adopted due to high implementation cost and
existing formats cannot evolve because they need to maintain com-
patibility across systems. Can this problem be solved by introducing
a new abstraction? We answer affirmatively with AnyBlox, a frame-
work for reading arbitrary datasets using lightweightWebAssembly
decoders bundled with the data. By decoupling decoders from both
systems and file format specifications, AnyBlox allows transpar-
ent format evolution, instance-optimized encodings, and enables
mainstream adoption of research advancements. It integrates seam-
lessly with modern systems like DuckDB, Spark, and Umbra, while
delivering solid performance and security guarantees.

PVLDB Reference Format:
Mateusz Gienieczko, Maximilian Kuschewski, Thomas Neumann, Viktor
Leis, and Jana Giceva. AnyBlox: A Framework for Self-Decoding Datasets.
PVLDB, 18(1): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/AnyBlox/vldb-2025.

1 INTRODUCTION
This paper investigates a future-proof abstraction layer between
data encodings and data systems. While researchers continuously
develop faster and more space-efficient encodings [4, 5, 16, 49], as
well as novel techniques like correlation-driven compression [32, 39,
57, 58, 81], these find no adoption in practice. New storage formats
fail to gain traction, while existing formats undergo ossification,
as datasets continue to be produced using outdated specifications
to maintain compatibility with existing readers [48].

Monolithic database systems of the past fully controlled their
storage representation, hiding problems inherent to format evolu-
tion from the users. However, the era of traditional data silos is over.
The database community turns towards modular systems based on
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Sys 3

Sys 2

Sys 1

.sys1

.sys2

.sys3

.parquet

.json

.csv

.orc

.future

.domain

Sys 3

Sys 2

Sys 1Data lake

Figure 1: The N ×M problem: In the past (left) every system
controlled its data and internal format. Today (right) data is
outside of systems’ control. No system supports all formats
and each system has specialized glue code for each format.

open formats [50], the industry moves towards open table formats
in data lakes [99], and data scientists want to freely move between
platforms when analyzing their existing data in exotic formats (e.g.,
High Energy Physics [34], bioinformatics [15, 24, 25, 45]).

These developments force OLAP systems to break away from
physical data independence advocated by Codd [27] and instead
directly interact with data in its storage format, as illustrated in
Figure 1. This makes issues of format interoperability painfully ap-
parent, as format adoption becomes too expensive for maintainers,
preventing evolution and locking away potential users.

We identify the underlying issue as an instance of the N ×M
problem, where 𝑁 systems having to support𝑀 formats leads to
𝑁 ×𝑀 implementation and maintenance effort. Any novel approach
falls into a vicious cycle that prevents adoption – an encoding needs
to be popular enough to justify the cost of support, but it will not
gain popularity without being widely supported. Similar problems
were faced and solved before in different domains by introducing
an abstraction layer, such as LLVM’s language-independent inter-
mediate representation for compilers [52] and the Language Server
Protocol for language tooling [61]. In this paper we ask:

What is the correct abstraction betweenmodern
data-processing systems and storage formats?

In Section 2 we analyze the strengths and weaknesses of state of the
art and identify key properties such an abstraction must provide.
As our main contribution we introduce AnyBlox, a framework
for self-decoding datasets, in which data is bundled together

https://doi.org/XX.XX/XXX.XX
https://github.com/AnyBlox/vldb-2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


Sys 3

Sys 2

Sys 1

.future

(a) Native code. Decoder is fully
integrated in each system.

Sys 3

Sys 2

Sys 1

.future

user control

(b) Extensions.Hosts have custom
APIs, run user-written code.

user control

Sys 3

Sys 2

Sys 1

.future

(c) Isolated extensions. Hosts
have custom remote APIs.

user control

Sys 3

Sys 2

Sys 1

.future

(d) Static verification. Hosts run
verifier and compiler (white box).

Figure 2: Supporting a .future format in three different Hosts according to each of the analyzed approaches.

with WebAssembly bytecode decoders, allowing any consumer to
read any data encoding without knowledge of its details:

• Section 3 presents our Bring-your-own-Decoder archi-
tecture based around lightweight WebAssembly decoders,
allowing arbitrary formats to be supported while providing
solid performance and security guarantees.

• Section 3.6 describes our novel memory management
scheme, which allows zero-copy transfer of data between
decoder and database system.

• Section 4 shows the integration of AnyBlox into a wide
range of database systems, which employ vastly different
data processing paradigms.

• Section 5 showcasesmultiple complex encodings pack-
aged into AnyBlox and evaluates their performance.

With these contributions we argue for a new paradigm in data
ingestion – instead of systems decoding datasets based on format
specification, data should decode itself, eliminating the unsus-
tainable tight coupling between formats and systems. We outline
the potential impact and future research directions in Section 6.

2 PROBLEM SPACE & RELATEDWORK
We identify four key properties that are desirable in a future-proof
storage format abstraction:

• Portability – how easy is it to integrate the solution across
different systems and hardware architectures?

• Security – what isolation guarantees does the solution
provide? Can an error compromise the host system?

• Performance – how does the solution fare in terms of
query latency and throughput?

• Extensibility – how easy is it to support a new data format
with the solution?

State-of-the-art systems integrate data formats using a variety of
approaches, which Figure 2 illustrates. All of these approaches have
strengths, but also shortcomings that cause the problems identified
in Section 1. The following section analyzes this in detail, and
Table 1 outlines key findings. This analysis informs the design of
AnyBlox, which we introduce in Section 3.

In the following, we will refer to a system ingesting data as the
Host, and the algorithm required to read encoded data as a De-
coder. The Host is an arbitrary data-processing system; it can be
a simple tool printing decoded data to a terminal, an interactive
notebook, or even a complete database system. The Decoder is an
arbitrary algorithm that takes data in some specific encoding as
input and produces data in a specified output format; the input
encoding is unrestricted – data can be row- or column-encoded,
nested, unstructured, or even virtual, e.g., an algorithm which pro-
duces TPC-H table data for a given scale factor.

2.1 Approach: Native Code
Today, most Hosts integrate new formats by adding a native im-
plementation directly into their codebase. That is how databases
support new compression schemes [37], how the Apache ORC file
format [85] proliferates [100], and how JSON (Javascript Object
Notation) [1] made its way into the database world [36, 38, 63].

Using native integrations, authors of an encoding scheme need to
put the Decoder code into the existing codebase of every Host they
wish to support (c.f., Figure 2a). This directly leads to unsustainable
𝑁 ×𝑀 development effort for 𝑁 systems and𝑀 formats.

This approach suffers from obvious Portability issues, as a
Decoder in one Host cannot be reused in another. Similarly, it
provides weak Extensibility, i.e., it is difficult to support a new
format in an existing Host. Its main advantage is Performance,
since the tight integration allows the implementation utilize all
Host internals. A well-written native integration thus provides an
upper bound for the performance of other approaches.

Table 1: Evaluation of different approaches according to our
design dimensions. We analyze AnyBlox in Section 3.

Approach Porta-
bility

Secu-
rity

Perfor-
mance

Exten-
sibility

native − − − − + + + − − −
extensions − − − − + + + + / −

isolated extensions + / − + + + − +
static verification + + / − + / − −

AnyBlox + + + + + + + +



While native Decoders don’t inherently expose new attack vec-
tors, the integration of a dedicated Decoder for each format into the
system core increases the likelihood of exploitable bugs. The effects
of a bug in the Host’s core are unrestricted and can range from crash-
ing the process to data corruption, which is especially dangerous in
case of systems written in memory-insecure languages like C/C++.
The dependencies required by the Decoder are not isolated, exacer-
bating supply chain issues. Since Hosts require𝑀 integrations for
𝑀 different formats, a security vulnerability becomes statistically
inevitable. For example, adding JSON support to the widespread
PostgreSQL database system [88] led to a high-severity security
vulnerability discovered over 5 years later [72].

2.2 Approach: Extensions
To provide a more open platform and alleviate the issues inherent
to the previous approach, some database systems allow users to
extend their capabilities with custom code (c.f. Figure 2b). For ex-
ample, PostgreSQL, the DuckDB [30] and Microsoft SQL Server[62]
database systems allow dynamic loading of binary modules written
in C/Rust, C++, and C#, respectively. A well-designed extensibility
API allows Decoders to achieve near-native Performance by allow-
ing implementers to leverage internal Host structures, implement
predicate pushdown, etc., as exemplified by DuckDB’s vectorized
Parquet reader extension.

Adding a new Decoder as an extension requires some work, but
not nearly as much as in the native case, thereby improving Ex-
tensibility. Portability, however, is still weak. Every Host has
a different extensibility API, and each Decoder extension has to
be maintained separately. Moreover, porting a DuckDB extension
to a system built for the JVM (Java Virtual Machine) [65], such as
the Apache Spark analytics engine [84], would require a nearly
complete rewrite in a different tech stack.

Extensions are usually shared binary modules (e.g., an .so file, a
.jar file) that are dynamically loaded by the system. This presents
the worst case scenario for Security as it amounts to running
arbitrary code at the same privilege level as the Host, leading to
an immediate and inherent RCE (Remote Code Execution) vulner-
ability. Even even a malfunctioning trusted extension can cause
arbitrary damage inside the process.

2.3 Approach: Isolated Extensions
In recent years a number of solutions for running arbitrary User
Defined Functions – UDFs – with isolation guarantees have been
proposed, allowing custom user data processing code to run in an
environment separate from the Host. For example, Saur et al. [73]
studied containerized UDFs, where the untrusted data processing
code runs in an isolated environment via Docker [29] containers,
though other mechanisms like virtual machines behave similarly.
Data warehouses Snowflake [78] and Amazon Redshift [13] imple-
ment a similar approach, where user-defined code can be located
in the cloud, registered with the Host, and called remotely.

In the isolated scenario, the authors of the encoding scheme
need to place their Decoder in the Host’s isolation mechanism
and implement the communication protocol for receiving requests
and sending data back to the Host (c.f., Figure 2c). This approach
is more Extensible and Portable than integrated extensions, as

Decoders are isolated and hosted independently. However, vendor-
specific constraints still exist (e.g., Redshift forces usage of their
own proprietary FaaS service, exacerbating vendor lock-in). Secu-
rity guarantees are excellent, as the extension is fully isolated has
no access to data that is not explicitly sent to it.

As Saur et al. show, Performance is mainly constrained by the
data transfer between the Host and the isolated extension [73].
While the authors report 10% overhead for data transfer to a locally-
hosted Docker container using the Arrow Flight [86] format for an
ML classification workload, our experiments show that a Decoder
workload is less favorable: In run-length encoding, which is a data-
intensive, but computationally lightweight scheme, decoding using
a vectorized Decoder is fast (6.5GB/s), but data transfer (1.5GB/s)
dominates the runtime (80%). This shows that low-overhead commu-
nication protocols like Arrow Flight can alleviate, but not entirely
eliminate data transfer cost. Additionally, the Host may miss out on
optimization opportunities e.g. because of the high logical isolation
between Host’s optimizer and runtime, and the Decoder.

2.4 Potential Approach: Static Verification
In search of combining good performance and security guarantees,
we again turn to compiler research as inspiration. Programming
languages generally improve security using either a memory-safe
runtime (Java, C#, Elixir, etc.) or static verification at compile time
(Rust, uBPF, etc.). In the following section, we discuss the merits
and drawbacks of static verification, and why we ultimately decided
on a different approach.

To load Decoder extensions, the Host system has to run arbitrary
code inside its own process. The standard mechanism is to verify
the code first and then compile it once it is proven to be safe (c.f.
Figure 2d). One of the prominent, eBPF, can be used to run custom
code in the linux kernel for packet filtering [92], programming
NVM storage devices [47], and querying data structures [101]. One
can use uBPF, the user space implementation of eBPF, to verify
arbitrary decoders and securely run them in the host process.

The uBPF toolchain consists of the eBPF bytecode, a C-to-eBPF
compiler, a static verifier for eBPF, and a JIT (just-in-time) compiler
allowing Portable execution on x86 and ARM. On paper, the veri-
fier also guarantees safe memory accesses, termination, prohibits
any system calls, and isolates the decoder from the network and
file system. In practice, however, the verifier has bugs and allows
memory-insecure programs to pass [17, 66, 83, 93, 96, 102]. Thus,
the Security of this approach is better than that of native exten-
sions, but not satisfactory without further verification research.

The performance of uBPF is great in theory, since it is JIT-compiled
into native x86 or ARM assembly. Our experiments show, however,
that the Performance suffers from (1) pervasive bounds-checks,
(2) limited loop support, and (3) no vectorized instructions. Finally,
Extensibility suffers from the difficulty of correctly implementing
an eBPF algorithm to pass the verifier. The C dialect required is
unwieldy, cannot utilize existing libraries tailored for eBPF, and the
verifier requirements often clash with compiler optimizations. For
example, the C-to-eBPF compiler may elide bounds checks that it
deems redundant, causing the verifier to reject the eBPF code.

In conclusion, a statically-verified language for Decoders is a
promising idea, but requires further research. In particular, such a



user control

Sys 3

Sys 2

Sys 1

bundle

.future

.wasm

(a) Supporting a .future format
with AnyBlox using a bundled
Decoder. Each Host runs arbi-
trary Decoders via libanyblox.

decoder

.wasm

data

.future

response
libanyblox

request

(start, count)

wasmtime

ArrowBatch

init
bundle

(b) Host maps the data and the
Wasm Decoder in an isolated
wasm runtime. It then continu-
ally requests batches of tuples.

Figure 3: Integration of AnyBlox, Hosts, and a .future format.

language would need to limit its expressiveness, so that the verifier
and compiler can be small and easy to audit for correctness, while
also remaining expressive enough to not limit extensibility.

3 ANYBLOX
There are twomain conceptual properties a future-proof data access
solution must have: First, in order to solve the 𝑁 ×𝑀 problem and
enable arbitrary data format evolution, it must abstract both data
format internals away from systems, and system internals away
from data decoders. Second, this abstraction layer must allow direct
file access and data sharing use cases. These goals are at odds with
each other, since direct access seemingly precludes any opportunity
for introducing abstraction layers – where to put the format decoder
that implements the abstraction? We argue that there is only one
possible place for the decoder: In the data file itself.

Self-decoding data solves the conceptual goals of abstraction
with direct file access, but comes with its own set of challenges:
How to ensure decoder portability across platforms? What are
the security implications of running foreign code, and to make it
performant? In the following, we describe our implementation of
self-decoding data sets, AnyBlox, and how it solves these challenges.
AnyBlox works on bundles of encoded data alongside WebAssem-
bly bytecode defining a Decoder. The decoder can be packaged
with the data in a single .any file, but a data lake might store
decoder and data separately in an object store and tie them to-
gether via its metadata layer. Hosts can use the AnyBlox Library
(libanyblox) to read any data following the API, which consists of
the Decoder format (Section 3.1), the format of data returned to the
Host (Section 3.2), and the metadata contained in the self-decoding
dataset (Section 3.3), as shown in Figure 3.

3.1 WebAssembly Decoders
WebAssembly (Wasm) is a specification of a virtual machine and
its portable bytecode [35]. Its strength lies in a machine-verifiable
guarantee on memory-safety and isolation from the host system
[95]. It has been successfully utilized for isolation in different data
processing applications, e.g. for ML workloads in Big Query [55],

stateful serverless FaaS [75], and UDFs in databases [76], which
makes WebAssembly a prime candidate for self-decoding data sets.

3.1.1 Portability. Wasm code is portable and can be compiled
and run on a wide range of architectures, including browsers, mo-
bile devices, embedded, and server workstations; as we show in
Section 4, AnyBlox easily integrates into a variety of existing Hosts.

3.1.2 Security. WebAssembly’s specification is verified to uphold
isolation guarantees [95]. Naturally, the guarantees depend on the
implementation of the specification being correct. AnyBlox utilizes
the Wasmtime implementation and the Cranelift compiler to lower
the Wasm bytecode to the native instruction set [20, 21]. Recent
work suggests that the main source of vulnerabilities in WebAssem-
bly is the compiler, namely the instruction selection and lowering
process [91]. Formal verification of WebAssembly software isola-
tion is an area of active research, in particular it was demonstrated
that it is possible to implement a provably-safe Wasm sandbox with
low performance overheads [18].

AnyBlox is built on top of open-source libraries and within the
Rust ecosystem. The majority of the code is in safe Rust, meaning it
guarantees memory and thread safety. All the unsafe code is related
to the Wasm memory maps and encapsulated in a few hundred
lines of code in a single module, making it easily auditable.

3.1.3 Performance. Wasm in theory allows for near-native per-
formance, since it is JIT-compiled into the Host’s native instruction
set. Moreover, AnyBlox avoids expensive data copying due to our
memory manager design (see Section 3.6). While we devote Sec-
tion 5 to performance evaluation, let us note here that research into
closing the gap between Wasm and native code is both extensive
and ongoing [41, 79]. In 2019 Jangda et al. identified instruction
selection as the main source of performance degradation [40], and
Yan et al. argue that common LLVM optimizations are ineffective
when applied to WebAssembly [97]. Since then, major strides have
been made in development of the novel Cranelift compiler. Cru-
cially, AnyBlox can easily benefit from future improvements in
Wasm compiler technology, as all the JIT and sandboxing details
are encapsulated in libanyblox and not exposed in the public API.

3.1.4 Extensibility. Complex decoding schemes are easily imple-
mentable, as most general-purpose programming languages have a
WebAssembly toolchain and compiler, including popular backends
like LLVM, JVM, and CLI. The main obstacle we have identified
when porting decoding schemes to Wasm are SIMD instructions,
which are a crucial component for some high performance com-
pression schemes like PFOR [54], DELTA, dictionary, RLE [28], as
well as data encodings like JSON [51]. Unlike eBPF, WebAssembly
exposes SIMD intrinsics, but developer effort is required to convert
from x86/ARM SIMD to the different Wasm instructions. However,
since WebAssembly defines SIMD intrinsics on the level of the byte-
code, Wasm modules are fully portable as the JIT compiler selects
the appropriate instructions for the Host machine.

3.2 Output Format
Since we want everyone to be able to write a single program that
will decode their format, we need a clear definition of the decod-
ing output. After considering natural requirements arising from



our analysis of existing data processing systems and decoding
schemes – columnar storage, support of most standard SQL types,
low-overhead conversion to internal representations, portability
and extensibility – we have chosen Apache Arrow [10].

Arrow is a robust standard, already supported as a data format
by a number of database systems, and fulfills all the above crite-
ria. Arrow standardizes all the most used data types for integers,
floating-point numbers, decimals, date, time, strings, etc. Apache
maintains high-quality libraries for efficient and zero-copy pro-
cessing of Arrow in most commonly used programming languages.
Arrow data is columnar, but complex multifield structures can be ex-
pressed as a logical type. Moreover, Arrow is extensible and allows
custom data types.

3.3 Metadata
The ideal scenario is that data is distributed as a single self-decoding
file, necessitating a thinmetadata layer in .any files. The Host needs
to know the schema of the data that it loads from an AnyBlox file,
usually during the query planning stage, ergo before decoding
begins. We also require the number of rows in the compressed
file, (an estimate of) the size of decoded data, and theminimum
recommended batch size. These metrics aid the Host when using
AnyBlox data sources (see Section 4.5).

To make AnyBlox truly future-proof we also allow providing
the Decoder URI and Decoder cryptographic checksum. This
provides two distinct capabilities. First, the file may not contain the
decoder and instead provide an external URL as the URI, allowing
the Host to download it from a remote location. To maintain secu-
rity, the downloaded payload should always be verified against the
checksum. Second, once an encoding scheme becomes proliferated,
a Host may decide to provide a more integrated native implementa-
tion of the Decoder. When opening an .any file it can compare its
Decoder URI against a list of well-known URIs and instead decode
the payload using its native Decoder.

3.4 Host Communication
AnyBlox is a modular system that needs to span the distance be-
tween an arbitrary data processing system and an execution envi-
ronment for arbitrary WebAssembly code. This establishes two in-
terfaces, between Host and libanyblox, and between libanyblox
and an the WebAssembly Decoder. We present a top-level diagram
of these API boundaries in Figure 3b.

To read a dataset the Host first initializes aDecoder Job (“open”),
passing metadata, the dataset file, and theWebAssembly Decoder,
which is a Wasm module exposing a decode_batch function (c.f.,
Section 3.5). Then, the Host can repeatedly request arbitrary tuple
ranges, which are decoded into Apache Arrow Record Batches.

The architecture is illustrated in Figure 4. To aid our explanation,
let us pick an encoding scheme and explain how AnyBlox allows
one to use datasets encoded with it in an arbitrary Host that in-
tegrates with libanyblox. We will examine run-end encoding
of a single column of 32-bit unsigned integers. The data is com-
pressed by finding runs of repeating values and encoding them as
a pair (lastRid, value), where rid is a sequence number assigned
to each row from 0 to 𝑁 and 𝑁 is the total length of the column:

1 2 3 4 5 60

3 2 1 3 2 4

rid
val

REE

7 8 9 101112131415

4 9 1 15

3 3 3 1 2 4 4 4 4 4 1 1 1 1 1 1

In the following let us assume that we compressed 108 tuples and
the encoded dataset contains 106 run-end pairs

3.4.1 First batch. Decoding begins by request from the Host, usu-
ally when a table scan is scheduled on an AnyBlox data source.
The Host might decide to split the work across multiple threads,
either at plan time [33] or at runtime [53]. Let us assume some
thread is assigned the tuple range [400 000..500 000). The Host first
creates a decode job via the AnyBlox API, providing a file descrip-
tor to an open dataset. AnyBlox receives the Decoder bytecode
and JIT-compiles it if needed. This compilation is cached, so future
uses of the exact same Decoder incur no compilation cost. AnyBlox
initializes the WebAssembly sandbox, creates the linear memory
chunk accessible for the Decoder, hooks the dataset contents via
another memory map, and links the WebAssembly module with
the implementation of the memory.grow(u32) function which the
Decoder can use to allocate a given number of pages.

Control returns to Host, at which point it can start the scan.
Modern systems process data in batches to amortize operator com-
munication overheads [33, 53], so the Host requests AnyBlox to
decode a batch of tuples (e.g., 104), calling the job with parameters
startTuple = 400 000, tupleCount = 10 0001. AnyBlox delegates this
into the WebAssembly module, calling its decode_batch function.

When the Decoder is called for the first time it needs to find
its bearing in the dataset. To locate the run containing the tuple
with rid = 400 000 it binary-searches the run-end encoded dataset.
After that the Decoder can be implemented by keeping a state
(rid, 𝑖, val, rem), where rid is the ID of the next row to return, 𝑖 is
the index of the run encoding pair, val is the value of the current
run, and rem is the remaining number of rows in the run. The
Decoder loop is then:
if rid == start_tuple + tuple_count: return batch;
else if rem > 0: result.add(val), rid += 1, rem -= 1;
else: i += 1, (val, rem) = read pair at index i;

To put all values into the result, the Decoder needs to allocate
memory. It knows the required length a priori, since it needs to
output tupleCount = 10 000 32-bit integers. This requires 40 000
bytes, plus some overhead for the Arrow Batch structure. In We-
bAssembly all allocations are performed in full pages, and a page is
64 KiB. The Decoder thus issues a memory.grow(1) call at the start.
The Host processes the request and returns the index of the newly
allocated page. The Decoder can put all the results in that space,
and returns a pointer to the completed Arrow Batch as the result
of the decode_batch call.

AnyBlox translates the pointers from WebAssembly into native
addresses for all buffers in the batch and then returns it back to the
Host, which processes the Arrow payloads according to its own
logic in the AnyBlox operator.

1This batch size originates from the morsel-driven parallelism paper, which specifies
104 as a good morsel size for a simple scan over an integer column in their setup [53].



Virtual memory

Physical memory

System resources

DATA

mmap ANON

WORK

mmap FIXED
data fd

Wasm runtime

decode_batch(ptr, len, tid, tcnt, state, proj)

INIT

PROT RWE

PROT R

PROT NONE

decoder.wasm

GUARD

memptr

STATE

RecordBatch

1

1

2

2

3

3 4

4 5

memend5

returns

grow(pgs) -> ptr
6 memory.grow

6

Host

Figure 4: Diagram of an integrated AnyBlox runtime and a Decoder instance. The sandboxed Decoder has access only to the
pictured anonymous memory map. Relevant parameters labelled with numbers: (1) pointer to the start of the linear memory;
(2) pointer to the start of the encoded data; (3) length of the encoded data; (4) pointer to the state page; (5) end of currently
accessible linear memory; (6) AnyBlox-provided memory allocation function.

3.4.2 Future batches. If the Decoder was stateless, calling for an-
other batch (startTuple = 410 000) would require redoing the binary-
search andmemory allocation. AnyBlox optimizes this by allocating
a page for the Decoder to keep arbitrary state in, which it passes
as one of the arguments to decode_batch. For example, our REE
Decoder can keep the (rid, 𝑖, val, rem) state on that page, as well as
a pointer to its existing Arrow Batch allocation. Once it receives
a call and sees that startTuple = rid, it can directly resume the
main loop, avoiding the initial binary-search. It can also reuse the
memory allocated previously, avoiding the memory.grow call and
improving the performance of the Decoder.

3.5 Decoder API
The Decoder needs to expose only one function, decode_batch,
with the following formal parameters:

• i32 data, the pointer to the place in Wasm linear memory
where the encoded data starts;

• i32 data_length, the length in bytes of the encoded data;
• i32 start_tuple, the ID of the first tuple to decode;
• i32 tuple_count, the number of tuples to decode;
• i32 state, the pointer to the place in Wasm’s linear mem-

ory where the job state is stored;
• i64 projection_mask, a bitmask specifying columns to

decode (column projection).
The Decoder, constrained by the WebAssembly standard, has no
access outside of the sandbox aside from the memory.grow call. It is
prohibited from modifying the pages containing the encoded data.
Wasmtime catches any runtime errors or out-of-bound accesses,
terminates the Decoder, and returns to the runtime.

The state page is zero-initialized at the start. State only an opti-
mization, allowing Decoders to cache metadata applicable to the
entire dataset or reuse dynamic memory allocations across calls.
In particular, since the Decoder must perform correctly at the first
call, and the runtime may clear the state page before each call, De-
coders are guaranteed to be idempotent. Their behavior can only

vary based on the input parameters to decode_batch and the data –
they have no access to system calls, thus no sources of randomness,
clocks, etc. Therefore, because AnyBlox zeroes the state page at the
start of every job, it guarantees that decoding the same file twice
using the same parameters will return equivalent results.

3.6 Runtime
During initialization the Decoder is JIT compiled and the resulting
module cached, so the costly compiler optimization step is incurred
only once per Decoder. The linear memory object for the Decoder
instance is created. Finally, an object representing the thread-local
job is created as a handle to this instance and handed back to the
Host. The compilation and isolated execution of Wasm code is done
by Wasmtime [21]. Our core technical contribution is custom linear
memory management for instances that ensures data integrity and
low overhead access to both the input and output data.

The WebAssembly standard imposes that memory accessible
to the Wasm instance is linear and starts at 0x0. The guest code
can allocate memory by invoking a grow(x) function, where 𝑥

is the request size in 64KiB pages, while the return value is the
pointer to the start of the newly allocated region of 𝑥 pages. The
implementation of grow ought to be provided by the Host, and
the standard does not impose a specific mechanism for memory
management on the Host’s side.

By default, Wasmtime implements the specification using a well-
known Software Fault Isolation technique for 32-bit pointers [31]: It
maps 8GiB of protected virtual memory, while allocation requests
from the Wasm instance are served by modifying the protection
to allow read-and-write access for the required number of pages.
This ensures that any memory access expressible in Wasm code
falls within the virtual allocation, as the maximum addressable
pointer and length are both limited by 232 − 1, and thus requires no
runtime bounds-checks in the compiled code. The physical memory
allocation is handled by the underlying operating system’s paging
mechanism.



The challenge here is providing the entire encoded dataset to the
Wasm instance through this linear memory abstraction. A naive
solution would reserve the required chunk and copy the dataset
into it, which would incur a heavy initialization cost as a potentially
large amount of data would be copied. One could also envision a
paging abstraction, where the Host would expose a function to read
a given page of the dataset while ensuring copying happens only
once per page; this approach suffers from excessive complexity, as
we would be essentially reimplementing a page mapping and page-
miss handling mechanism, and it could not be made transparent
for the Decoder – it would have to work on the page-sized chunk
abstraction of the dataset, which, among other things, would make
vectorized algorithms more complicated and less efficient.

Instead, we propose transparent data hooks and thread-local
memory pools. The dataset is available as a file descriptor, which
we memory map into the virtual linear memory. This operation
requires few system calls and is fast even for large datasets. The
Decoder can transparently access this data in the same manner as
any other area of its linear memory. The overall layout is shown
in Figure 4. This approach is similar to how Faasm handles shared
memory regions by swapping memory maps [75], but AnyBlox
can provide a simpler and more cache-friendly mechanism since
threads share only read access to the data.

AnyBlox makes no difference between file descriptors pointing
to physical files, shared memory regions, or in-memory buffers
like those maintained by memfd_create. The initial memory re-
quired for the module’s code, stack, and static data is allocated at
the beginning of the memory. This is usually a couple megabytes.
The hook is then mapped into the first available page after the
initial pages, with the state page allocated immediately after. The
Decoder’s allocation requests are served from the following pages,
growing dynamically as required.

The key property of this design is that linear memory regions
can be cached in the thread-local pool and reused. While the Host is
likely to decode a dataset with multiple threads, it is unlikely it will
have two jobs running on the same thread at the same time, since
context switching is detrimental to performance; even less likely to
have two jobs on the same thread on the same dataset at the same
time. Assume we allocate a linear memory region for a Decoder, it
finishes its job, and we want to decide if another instance can reuse
the memory. It is possible if the following constraints are upheld: a)
the initial memory pages are large enough; b) the already hooked
dataset is the same; c) all additionally allocated memory is zeroed
(this is required by the WebAssembly standard). In practice, the
initial regions are small (around a megabyte). When creating an
instance we know the initial requirement as well as the dataset used,
so the cache policy is straightforward: If a fitting map exists, use it,
clear out the allocated memory with madvise, and protect all pages
after the state page with PROT_NONE; if no fitting map exists and we
are below memory instance limit, create a new virtual allocation;
otherwise, pick the least recently used existing map and reuse it by
unhooking the existing dataset and reinitializing.

The system can only infer that the dataset is the same if it comes
from exactly the same opened bundle object. Sharing a single bundle
between threads is important for performance, and simple, since
the data is read-only. Moreover, if a query plan contains the same

bundle as a source multiple times, the Host would benefit from
merging them as one.

If the file is not directly available, e.g. it resides remotely and
cannot be mapped to a file descriptor, it must first be downloaded.
An alternative solution would be to enable lazy loading by custom
handling of a page fault, e.g. via signal handling or specific operating
system extension points [2]. In this scenario, theHost would provide
code that populates a given page when it is first accessed by the
Decoder. The Decoder would access memory as usual with full
transparency, but only data it actually needs to access would be
populated by the Host dynamically. This would not interfere with
our memory caching mechanisms, allowing the materlialized data
to be reused later. AnyBlox does not yet implement this, but it is
an interesting technique for future work.

3.7 Discussion
AnyBlox is built to be future-proof. Our design allows for evolu-
tion without breaking existing implementations and datasets. In
particular, (1) Improvements to Wasm compilers can be directly
harnessed with an update to libanyblox; since the Wasm byte-
code remains the same, this is a seamless upgrade that preserves
backwards-and-forwards compatibility. (2) ANew decoder dialect
could also be introduced in a compatible manner as long as there
exists a Wasm transpiler. For example, if a statically-verified DSL
for Decoders was designed (as discussed in Section 2.4), a Decoder
in the DSL could be distributed with an automatic equivalent Wasm
version being generated alongside. Systems running an older ver-
sion of AnyBlox would use the Wasm code as before, while new
versions could opt into running the DSL. (3) AnyBlox supports Op-
tional metadata, allowing system-specific metadata that serves
as a hint for one system but not another. An example of this is
sizeInBytes, describing the estimated size of a fully decoded dataset
in memory, which can aid Spark in its network traffic estimations.

We believe these properties make AnyBlox a suitable solution
for the problem of data format ossification. However, the use of
WebAssembly also introduces some drawbacks that we discuss in
the following. First, WebAssembly by default has a 32-bit address
space into which AnyBlox maps datasets, meaning each mapped
file has a maximum size of 4GB. WebAssembly recently gained
support for using 64-bit addresses [3], but the performance impact
of enabling this option is not yet well studied. Most systems using,
for example, Parquet, keep file sizes well below 4GiB [8, 77, 87] to
facilitate cheap updates, so we expect this restriction to have little
impact in practice. Second, Wasm code is currently not as fast as na-
tive code and does not support wide (> 128bit) vector instructions.
Section 5 studies the performance impact of this limitation.

4 INTEGRATION
To demonstrate the portability of our solution we have integrated
them into four fundamentally different systems: DataFusion [50],
DuckDB [70], Umbra [64], and Spark [98]. We posit that these
four Hosts cover a wide-enough variety of paradigms to strongly
suggest AnyBlox poses no significant hurdles when integrating
into an arbitrary data-processing system. In particular we cover
differences in:



• Core paradigms – Umbra is a compiling system, and
DuckDB and DataFusion are vectorized systems – two very
different paradigms [43]. Spark focuses on distributed work-
loads, and only generates code for expressions.

• Parallelism – Umbra and DuckDB are both morsel-driven
with a central executor [53], while Spark and DataFusion
use Volcano-style parallelism with exchange operators [33].

• Programming languages – Umbra and DuckDB are writ-
ten in C++, DataFusion in Rust, while Spark is written in
Java and Scala, running in a managed JVM environment.

• Maturity – Spark is a mature platform for diverse work-
loads and provides a plugin system; DuckDB is a widely
used in-process analytical database with a robust extension
API; Umbra is a closed-source research database that fo-
cuses on perfromance and provides no dedicated extension
points; DataFusion was published in 2024.

In the following we highlight integration details of interest for
developers seeking to bring AnyBlox into their system. In case of
DuckDB, its flexible system allows us to define a custom AnyBlox
operator and distribute it as a plug-and-play module, requiring
no invasive changes to the main DuckDB codebase. DataFusion
provides a similar extension point for a custom table source, and
the Spark integration uses a .jar plugin. We expect any system
supporting external extension modules to allow easy integration in
this manner. Umbra is not open-source, so we integrated AnyBlox
directly into the codebase and only provide a precompiled binary.

4.1 Internal Data Representation
While the Arrow format is optimized for zero-copy data transfer
between systems using it as its internal data format like DataFusion,
not all hosts do. Moreover, SQL-based systems rarely have stan-
dardized logical types, and each host may choose to perform the
SQL-to-Arrow type mapping differently. Arrow’s representation of
primitive types is natural, so types such as Int32 or Float64 re-
quire no conversion. Date types need to be adjusted to the system’s
internal representation, e.g., Umbra requires translation into the Ju-
lian calendar. Bool types are bit-packed in Arrow and might require
conversion into bytes. This results in a zero-copy, in-place type
conversion in most cases, with the booleans being an exception.

Beyond the representation of primitive types, systems use differ-
ent internal data layouts. DataFusion uses Arrow throughout the
engine [50], allowing truly zero-copy data sharing with AnyBlox.
DuckDB and Spark, like many modern systems [74, 89], support
reading data in the Arrow format, converting it to their internal
data layout on the fly. The type-mapping problem is thus already
solved, and there already is mainline code that translates Arrow
arrays to the internal representations. Umbra requires emitting
code to load the values from Arrow buffers into registers based on
the underlying physical type.

String types require the most care. Arrow supports two lay-
outs: Utf8 and Utf8View.Utf8 contains a length and a pointer to
the character data stored in a separate buffer. This can be easily
translated to the Spark string format (regular JVM String type).
However, both DuckDB and Umbra store strings using the small-
string optimization [64], requiring more complex logic. Utf8View is
actually based on this representation [11] as values may or may not

contain offsets in separate buffers, which need to be translated to
native pointers. Crucially, while the Utf8-to-Utf8View translation
cannot be performed entirely in-place, the actual string data buffers
do not need copying. The transfer is truly zero-copy in cases where
the host and the decoder use the Utf8View layout for all strings.

4.2 Language Interoperability
Umbra and DuckDB are written in C++, while the AnyBlox Runtime
is written in Rust. This makes the integration simple, as libanyblox
can easily provide C++ bindings into Rust code. Integration into
any system using a similar systems-level programming language
with support for a C FFI should be similar. With a Rust-native
system like DataFusion the integration is straightforward. Spark is
written in Scala and Java, and thus requires a Java Native Interface
bridge to communicate with libanyblox. Calls to AnyBlox return
FFI-safe arrays – Arrow specifies a C data interface that provides
uniform FFI across platforms, and thus the Arrow implementation
on the JVM allows loading compliant ArrowArray payloads into
JVM objects.

4.3 Concurrent Scans
All integrations follow a similar pattern to implement parallel scan-
ning of data, where an AnyBlox operator represents a full scan job
that then gets divided into tasks for parallel processing. AnyBlox
knows the exact size of the table from its metadata, and can skip
columns based on the projection mask provided by the Host.

Spark and DataFusion decide the parallelism during query plan-
ning, letting the AnyBlox scan operator statically partition the
workload without shared global state. This partitioning logic is in-
dependent of the underlying format itself and could be extended to
multiple nodes (e.g., with Hadoop). The morsel-driven parallelism
used byDuckDB and Umbra involves a global executor, with threads
dynamically fetching work items to process in their local AnyBlox
job. Threads can keep local state, and, as an optimization, they can
request large batches with decode_batch and then process them
in smaller chunks, e.g., the DuckDB global vector size.

4.4 Embedded AnyBlox: Future-Proof Parquet
AnyBlox can also be embedded inside existing file formats, allowing
them to evolve without breaking compatibility. We evaluate this
by integrating AnyBlox as an encoding in Parquet. In this scenario,
the Host is a Parquet decoding library, specifically Apache’s Rust
parquet crate [9]. Similarly to how Parquet provides dictionary
encoding with a single dictionary page and multiple data pages
[12], we prototype a scheme where a column starts with a Decoder
page and then opaque binary pages that can be decoded by Any-
Blox with the provided Decoder. While this approach needs further
work, e.g., to support record shredding [60], it shows large poten-
tial in both compression rates and throughput, which we show
in Section 5.1.3. Enabling Parquet’s generic compression on top
of the AnyBlox encoding can further compress the data as well
as the embedded Wasm bytecode. This approach allows arbitrary,
instance-optimized column encodings to be distributed alongside
conventionally encoded columns inside a single Parquet file.



Table 2: Approximate complexity of integrating AnyBlox
into each of the Hosts. Spark also required writing a JNI
bridge (433 LoC), which is reusable for any other JVM Host.

System Paradigm Parallelism LoC Persondays
Umbra Compiled Morsel-driven 1305 10
DuckDB Vectorized Morsel-driven 586 3
Spark Hybrid Volcano-style 756 15
DataFusion Vectorized Volcano-style 461 2

4.5 Embedded AnyBlox: Statistics & Pushdown
As Section 4.4 shows, AnyBlox can bring arbitrary, cutting-edge
encoding schemes to existing file formats such as Parquet. These
file formats usually store additional statistics or query optimizer
hints, which query engines use to improve performance. Scans from
remote object stores (e.g data lakes), can benefit from min/max
values per row group to avoid scanning all of the data. Unique
value count statistics for individual columns or blocks can facilitate
better query plans, and other specialized formats may benefit from
entirely different metadata. When AnyBlox is embedded into other
file formats such as Parquet at the row-group or column level, query
engines can benefit from their existing statistics utilization, column-
level filtering, and row-group-level filtering without change.

4.6 Standalone AnyBlox: Statistics & Pushdown
Without integration into other file formats, standalone AnyBlox
only encodes the schema and row count of the encoded data. Fur-
ther optimizer hints can be encoded (c.f., Section 3.7), but as a
generic framework, AnyBlox does not try to provide all statistics
that any system might need. Instead, we follow recent work [49, 69]
in suggesting that most statistics and indexes should be decoupled
from storage formats and put into query engines or search accel-
eration layers. AnyBlox allows query engines to scan and build
statistics over arbitrary formats, and is therefore a step towards
this direction.

Following a similar argument, standalone AnyBlox does not pro-
vide a predicate pushdown API: While filtering columns (projection
pushdown) is supported, filtering individual rows in a future-proof
framework such as AnyBlox requires an equally future-proof and
system-independent predicate expression format. Recent work on
Substrait [82] highlights industry interest in this topic. Finally, col-
umn projections cannot be pushed to remote files since standalone
AnyBlox requires the entire data set to be mapped into memory.
Section 3.6 discusses a potential workaround for this issue.

5 EVALUATION
While the security guarantees of AnyBlox follow from the We-
bAssembly sandbox and portability is proven by our system inte-
gration in Section 4, what remains is substantiating our extensibility
claims and showing the effectiveness of Wasm and the employed
memory architecture for performance-intensive workloads. For
that purpose, we evaluate the AnyBlox integrations using different
decoders, OLAP workloads, and microbenchmarks.

Experiments are performed on a 32-core Intel Xeon Gold 6430
machine with 256GB of DDR5 RAM (data rate 4400MT). Unless

libanyblox

.vortex Umbra
DuckDB
Spark

Parquet

.ree

.fsst

.root

DataFusion

Figure 5: AnyBlox bridges the gap between a variety of stor-
age encodings and arbitrary data processing systems.

stated otherwise, samples are collected after two warm-up runs,
which isolates the overhead of disk reads, Decoder compilation,
and thread initialization. Section 5.5.5 examines these overheads
in detail. We present median results, but unaggregated results are
available in our repository.

5.1 Did we solve the 𝑁 ×𝑀 problem?
Yes, AnyBlox solves the 𝑁 × 𝑀 problem, as we demonstrate in
the following. We cover a wide range of formats by implementing
(1) the encoding schemes FSST and REE, (2) Vortex [80], a novel
columnar file format using state-of-the-art compression research [4,
5, 16, 49], and (3) CERN ROOT, a specialized binary format storing
exabytes of particle physics data [22]. We complement this with
an integration of AnyBlox into a variety of systems, done by a
programmer with no prior experience with any Host codebase.
No integration took more than two weeks, and all integrations
were done in less than 2000 lines of code (LoC), as Table 2 shows.
While neither the integration time nor the required lines of code are
rigorous measurements of software complexity, they do indicate
that AnyBlox can be straightforwardly ported to different systems.
Figure 5 shows an overview. All integrations were straightforward
to implement and required no further changes to any Host system.
This enables great interoperability with minimal effort, allowing
data transformations such as the following (native DuckDB syntax):
COPY (SELECT * FROM anyblox('./ParticleDecay.root')

JOIN anyblox('./metrics.vortex') USING pType)
TO './ParticleDecayJoined.parquet'

5.1.1 Vortex. Vortex [80] is a novel format based on BtrBlocks [49]
and recent encoding research [4, 5]. Vortex outperforms existing
alternatives using modern and multi-layered encoding schemes
to achieve high compression rates, but suffers from the adoption
problem outlined in Section 1. We built an AnyBlox decoder with
little effort by compiling the Vortex codebase, specifying wasm32
as the target for the Rust compiler, and excluding non-essential,
OS-specific logic (such as file I/O), which cannot compile to Wasm.
AnyBlox can bring this cutting-edge research codec into multiple
database systems without any changes on the host side, leading to
immediate compression and performance improvements.

5.1.2 CERN ROOT. ROOT is a complex format developed at CERN
since 1995 and is widely used across the High Energy Physics (HEP)
community, with more than 2 EB of data stored in ROOT files [22].
Though much of this data is tabular, ROOT itself is not a relational



Native
Vortex

Parquet

AnyBlox
Vortex

AnyBlox
VortexDuckDB

Table

Parquet
AnyBlox
VortexDuckDB

Table

Parquet
AnyBlox
Vortex Parquet

AnyBlox
Vortex

Parquet

Figure 6: TPC-H and ClickBench evaluated on a single thread with DuckDB, Spark† , and DataFusion. Time spent in the scan of
the main table is shaded.

format and allows encoding arbitrary C++ objects. Since ROOT is not
supported in any conventional data systems, recent work on analyz-
ing ROOT data with SQL had to convert all datasets to Parquet [34].
Our AnyBlox decoder (based on a Rust port [19] for a large subset
of ROOT) instead makes ROOT files immediately readable by Spark,
DuckDB, and Umbra – no conversion required. Single-threaded
Umbra surpasses the throughput of the native ROOT framework
when performing an aggregation on particle decay data [56]. More
importantly, Umbra’s parallel processing automatically works for
ROOT files, yielding 6GB/s throughput 32 threads, while the native
framework offers no easy mechanism for parallelism.

5.1.3 Parquet. As Section 4.4 describes, we add AnyBlox as a Par-
quet encoding such that individual column chunks can use arbitrary
WebAssembly decoders. We benchmark this experimental Parquet
integration by implementing the standard Parquet RLE+bitpacking
hybrid decoder [12] as a Wasm decoder. We compare its throughput
on a compressed l_linestatus column of TPC-H against Apache’s
native Rust Parquet reader [9] and observe a mere 10% throughput
drop. We also test the Vortex Decoder on the ClickBench dataset
as in Section 5.3.2 to validate the viability of our prototype. Any-
Blox achieves a similar compression rate while improving the scan
throughput over native Snappy by 25%.

5.1.4 FSST & Run-end encoding. FSST [16] and REE are lightweight
encoding schemes that can be easily implemented in any language
that compiles to WebAssembly. Both are also implemented in Vor-
tex [80]. We use standalone Rust implementations in the decom-
pression microbenchmarks performed in Section 5.5.

5.2 Vortex Native vs. Vortex in AnyBlox
We begin by showing that (1) AnyBlox can be used to provide
both compression and performance improvements by introducing
novel encoding schemes; and (2) AnyBlox’s sandboxing mechanism
introduces acceptable overheads with complex decoding schemes
as compared to a native solution. To that end, we evaluate the
TPC-H benchmark with scale factor 20 in DataFusion and varying
the representation of the largest table (lineitem). DataFusion is
written in Rust, allowing direct integration of AnyBlox and Vortex.
We use the native DataFusion Parquet reader on a file with the
default compression scheme based on Snappy, which provides the
best decompression throughput; the Vortex file format decoder

†Spark only successfully executed 18 out of 24 selected ClickBench queries due to
issues with the native Parquet reader unrelated to AnyBlox.

inside AnyBlox; and the exact same decoder but compiled natively
without any sandboxing. Predicate pushdown has been disabled.

Across all queries both Vortex implementations outperform Par-
quet with over 2× lower scan latency (c.f., Figure 6, left), and it
provides a better compression rate (c.f., Figure 7). For Vortex, the
bulk of processing time is spent executing relational operators
(around 80%), whereas the Parquet reader spends almost half of
its time decoding the file. The difference in performance between
native and AnyBlox-based Vortex decoding is marginal, with a
5% increase in scan latency. However, this translates to a mere 1%
increase in overall latency, which is within measurement noise.

5.3 DuckDB Performance
Next, we test AnyBlox in a full database system – DuckDB. We
again compare AnyBlox Vortex to a native Parquet reader, but also
include comparison against the internal, non-portable native table
format of DuckDB. Furthermore, both Parquet and native DuckDB
table are allowed to use predicate pushdown, to fairly portray Any-
Blox’s disadvantage in this area as discussed in Section 4.5. The
performance results are shown in Figures 7, 6, and 8.

5.3.1 TPC-H. Across all queries and Parquet configurations, the
more efficient Vortex encoding outperforms Parquet despite the
WebAssembly overhead, and AnyBlox is often close to the native
baseline. In the single-threaded lineitem scan in Figure 6, both the
native format and AnyBlox can spend most of the time executing
relational operators (74% and 65%, respectively), compared to Par-
quet, which has to spend most of the time (70%) decoding data. The
biggest differences between in-memory table scans and AnyBlox
occur in scan-dominated queries that select many columns from
lineitem (Q1), high selectivity lineitem filtered scans (Q10, Q12
at 25% and 0.5% selectivity, respectively), and in Q21, where the
triple self-join on lineitem exacerbates the cost, as Figure 8 shows.

5.3.2 ClickBench. TPC-H is an important standard benchmark,
but fails to represent the real world, especially when it comes to
string data [32, 49, 94]. We therefore turn to the ClickBench bench-
mark [26], which contains real-world web-traffic data in a single
hits table. To focus on string compression, the following experi-
ment extracts the five string columns that are heavily used in the
majority of queries from this table, and compresses them using
Parquet, Vortex, and DuckDB, which uses FSST [16] string com-
pression in its native table format. Compared to DuckDB, Vortex
achieves a 1.85× better compression rate due to its multistage en-
coding without relying on heavy-weight Snappy compression like
Parquet, as Figure 7 shows.



AnyBlox
(Vortex)

Parquet
(None)

Parquet
(None)

Parquet
(Snappy)

Parquet (Zstd)
Parquet (Gzip)

Native Native

Parquet
(Zstd)

AnyBlox
(Vortex)

Parquet 
(Gzip)

Parquet
(Snappy)

compression ratecompression rate

th
ro

ug
hp

ut
 (M

 t
up

le
s 

/ s
)

Figure 7: Compression ratio vs workload throughput on
DuckDB for native tables, AnyBlox, and all Parquet com-
pression codecs supported by DuckDB.

Q1 Q10 Q12 Q21
0

5

10

15

20

la
te

nc
y 

(s
)

TPC-H (selected)

Q24 Q29
0

50

100

ClickBench (selected)

native table scan
native table rest

anyblox scan
anyblox rest

parquet scan
parquet rest

Figure 8: Selected queries from DuckDB TPC-H and Click-
Bench evaluation. Other systems exhibit similar behavior.
Time spent in the scan of the main table is shaded.

Since Vortex can only support files at most 4GB in length and
compressed ClickBench exceeds that, we partition the data into 4
files with equal number of tuples in each. We do this for the native
representation (split into 4 tables), Parquet, and Vortex alike. We
restrict the workload to a subset of ClickBench queries focusing on
string processing. In most queries, total processing time vastly out-
weighs scan times, with Q29, which evaluates a complicated regular
expression on URLs, as a prime example. In contrast, Q24 spends
more time in the scan because DuckDB cannot push down the
substring predicate into the non-native formats. Overall, AnyBlox
spends only 25% of the total runtime in the scan.

In the multithreaded scenario, AnyBlox still outperforms all
tested native Parquet readers, as the following table shows (in
millions of tuples per second, full TPC-H scale factor 20 workload):

Native
table

AnyBlox
(Vortex)

Parquet
(Snappy)

1 thread 47.36MT/s 33.67MT/s 16.47MT/s
32 threads 978.17MT/s 593.18MT/s 396.33MT/s
ratio 20.65× 17.62× 24.06×

Parquet seems to scale marginally better, but at a large cost in
terms of absolute performance [59]. We further analyze AnyBlox’s
scalability in Section 5.5.4.

5.4 Spark Performance
Finally, we evaluate TPC-H and ClickBench using Spark. Spark
has no native data format, but has a native Parquet reader. Spark
on a single thread is less efficient than DuckDB – most time (≥
90%) is spent executing operators. This means that, in Spark, scan
performance has little impact on real-life OLAP workloads. For
example, a 40% less efficient decoder would only make the Spark
workflow 4% slower. Figure 6 shows this: Though Vortex in AnyBlox
is more performant than Parquet, the overall impact is small. These
characteristics are exacerbated in ClickBench, where the analytical
operations dominate the scan even further.

5.5 Decoder Microbenchmarks
To better lay out the performance characteristics of our solution,
we now zoom in on specific decoders and compare them with
equivalent native implementations. We compile the same code into
a native module (using the standard LLVM Rust compiler), and into
a Wasm module. This experiment isolates the impact of the Wasm-
based design and the Cranelift compiler on rawDecoder throughput.
We first restrict ourselves to a single thread decoding the dataset in
a sequential scan. The results are presented in Figure 9.

The Faasm paper identifies similar worst-case throughput de-
creases (50% to 66%), but the results are not directly comparable due
to a different Wasm runtime and compiler choice. The authors sim-
ilarly conclude, however, that the large differences in microbench-
marks do not translate to equivalent slowdowns in end-to-end
workloads where other overheads dominate [75].

5.5.1 Run-end encoding. We revisit the run-end encoding exam-
ined in Section 3.4. Using the CommonGovernment dataset available
in the Public BI Benchmark [32], we compress its psc_key integer
column, achieving a compression ratio of roughly 2.62 – approxi-
mately 141 million rows get compressed into 27 million run-end-
encoded pairs. We implement the previously described decoding
logic and compile it into the native module (standard Rust LLVM
compiler) and into wasm (Wasm bytecode). We measure the time it
takes to decode the entire column sequentially in batches of 200 000.
The native code performs ≈ 40% faster in this comparison.

We re-implement the Decoder using vectorized instructions. First
we compare the only available Wasm SIMD instruction set, V128,
against the equivalent SSE2 on x86. Both utilize similar instructions
after Cranelift lowers the Wasm code. The SIMDWasm code is 2.5×
faster than the scalar Wasm code, highlighting the importance of

wasm native wasm
(V128)

native
(SSE2)

native
(AVX2)

native
(AVX512)

0

1

gi
ga

tu
pl

es
/s

REE

wasm native
0.00

0.25

FSST

Figure 9: Microbenchmarks of REE and FSST decoders.



vectorized instructions. The native SSE2 version is ≈ 40% faster
than the Wasm V128 version. We further compare to native AVX2
and AVX512 versions, which utilize larger vector sizes and outclass
the SSE2 and the Wasm version. We note small vector sizes are not
a fundamental limitation of WebAssembly, and there is already a
proposal for larger vector sizes in WebAssembly [68]

5.5.2 FSST. FSST is a simple but effective string compressionmech-
anism proposed in 2020 [16]. Some database systems use it in their
internal storage format for tables [64, 70]. It is also used in BtrBlocks
[49], and, by extension, Vortex [80]. We compress three key string
columns from the Taxpayer dataset from the Public BI Benchmark
– these are the columns used in all queries for that dataset. We store
both the compressed string data and the buffer of string lengths
that is not compressed further. This results in a 1.7GB AnyBlox file
that decompresses into 2.5GB of Arrow batch payloads in memory.
The Wasm decoder loses out by over 43% on this benchmark. FSST
is one of the worst cases for Wasm, because it heavily relies on 8-
byte reads in its implementation, and Wasm is 32-bit, which forces
it to emulate one 8-byte read with two 4-byte reads. Faasm authors
also identified this as incuring significant overheads in workloads
with heavy large integer arithmetic [75]. This is a fundamental
limitation of our approach, as even though a proposal for 64-bit
version of WebAssembly exists, it would be incompatible with the
SFI mechanism relying on only 8GiB of memory being addressable.

5.5.3 Batch size. For both of the above Decoders, we investigate
the impact of the requested batch size on performance and conclude
the results have similar characteristics to vector sizes in vectorized
databases [43] and batch sizes in Volcano-style exchanges [33] – the
size has to be big enough to amortize call overheads, but increasing
it past a certain point brings diminishing returns and requires more
work memory. The optimal size varies, but all tested Decoders
exhibit stable performance between batches of size 104 to 107.

5.5.4 Scaling. In isolation, decoding a dataset is essentially em-
barassingly parallelizable. One would expect the scaling of the
Decoders to be near perfect, and the experiments confirm that:

There is some overhead associated with synchronization of threads
and the Wasmtime runtime, which we examine next.

5.5.5 Initialization. Finally, we want to drill into the fine-grained
performance profile of a Decoder job. Many things happen on the
way from Host to Decoder and back: The Wasm code has to be
compiled, the memory regions initialized, the dataset mapped into
the region, and control switched to call into Wasm mediated by
Wasmtime. AnyBlox heavily caches every step.

Our REE and FSST Decoders compile in around 2ms and produce
binaries around 30 kB in size. Still, it is important for AnyBlox to
cache each compiled decoder to avoid paying this overhead. In
practice, we expect systems to often reuse the same Decoders.

When a thread creates an AnyBlox job for the first time, it needs
to create a thread-local 8GiB memory map for the Wasm linear
memory. The kernel creates a mapping for each of the pages in that
region, which takes between 3ms and 10ms (median 8ms) with
32 threads initializing simultaneously. Threads reuse initialized
memory mappings, so this cost is only paid when the Host spins
up a new thread – cold start.

When loading a new dataset, a thread needs to unmap the ex-
isting file descriptor and hook the new descriptor. This takes less
time than a full thread initialization – 700 µs to 800 µs for 32 concur-
rent threads initializing simultaneously. To remove this overhead,
integrations can reuse the same open dataset across runs.

Every new job needs to reset the memory it is going to use
by zeroing the state page and removing left-over allocations from
the previous job. This is the most optimized scenario and incurs
little overhead even when multiple jobs initialize concurrently (tail
latency of 250 µs for 32 concurrent threads). The main contention
occurs on the Wasm cache lock.

Finally, Wasmtime sets up required signal handlers and medi-
ates the call into the compiled Wasm code via a trampoline. The
overhead of this call is negligible – below 100 ns – and has no effect
on performance outside of excessively small batch sizes.

6 SUMMARY AND OUTLOOK
We presented AnyBlox, a framework for self-decoding data that
is easily portable across arbitrary data processing systems and
extensible for arbitrary decoding schemes. Any system that im-
plements an AnyBlox scan is able to securely and performantly
read any format providing a WebAssembly decoder, solving the
𝑁 ×𝑀 problem and format ossification. Files can bundle decoders di-
rectly, securely reference remote decoders using their cryptographic
hashes, and transparently apply native decoders for popular en-
coding schemes. One can envision a future “Parquet v3” format
that integrates AnyBlox, allowing arbitrary format evolution and
instance-optimized encoding schemes.

Instance-optimized encoding schemes such as correlation-based
compression [39, 57, 58], learned white-box compression [32], and
entropy compression [71] can be very powerful, but their special-
ized nature makes their adoption even more difficult than more
general-purpose schemes. AnyBlox paves the way for exploring
a large space of clever, instance-optimized data representations –
even pushing towards Kolmogorov complexity [46] – while still
being future-proof and readable by any system.

Building future-proof data formats is but one of the problems
that need to be solved to facilitate truly modular, future-proof, open
database systems. The community has been calling for moving
away from large, monolithic, overly complex systems for at least 25
years [23, 44, 67]. LLVM showed that an open framework can revo-
lutionize the design of complex modern systems like compilers [52].
Recently, Lamb et al. presented an open and extensible query en-
gine based around composable system design principles [50], prov-
ing such an approach can be successful. Execution plan frame-
works have been made more extensible using sub-operators [14, 42],
portable query optimizers [6, 7], and system-independent persis-
tencemechanisms [90]. Our work joins this effort with an extensible
and modular solution for arbitrary storage formats.



ACKNOWLEDGMENTS
We thank Andrew Lamb for fruitful discussion and his keen feed-
back. We also thank Maurice Scholtes for contributing the Parquet
integration.

REFERENCES
[1] 1997. The JSON Format. https://www.json.org
[2] 2024. userfaultfd(2) Linux User’s Manual. https://www.man7.org/linux/man-

pages/man2/userfaultfd.2.html
[3] 2025. Memory64 Proposal forWebAssembly. https://github.com/WebAssembly/

memory64/
[4] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:

Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB
Endow. 16, 9 (May 2023), 2132–2144. https://doi.org/10.14778/3598581.3598587
Publisher: VLDB Endowment.

[5] Azim Afroozeh, Leonardo X. Kuffo, and Peter A. Boncz. 2023. ALP: Adaptive
Lossless floating-Point Compression. Proc. ACM Manag. Data 1, 4 (2023), 230:1–
230:26.

[6] Rana Alotaibi, Yuanyuan Tian, Stefan Grafberger, Jesús Camacho-Rodríguez,
Nicolas Bruno, Brian Kroth, Sergiy Matusevych, Ashvin Agrawal, Mahesh
Behera, Ashit Gosalia, César A. Galindo-Legaria, Milind Joshi, Milan Potocnik,
Beysim Sezgin, Xiaoyu Li, and Carlo Curino. 2024. Towards Query Optimizer
as a Service (QOaaS) in a Unified LakeHouse Ecosystem: Can One QO Rule
Them All?. In Conference on Innovative Data Systems Research. www.cidrdb.org,
Amsterdam, The Netherlands. https://doi.org/10.48550/ARXIV.2411.13704
arXiv: 2411.13704.

[7] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj
Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query
Optimization for Any SQLDatabase. Proc. VLDB Endow. 16, 12 (Aug. 2023), 3515–
3527. https://doi.org/10.14778/3611540.3611544 Publisher: VLDB Endowment.

[8] Apache Parquet. 2025. Recommended Parquet File Size on HDFS. https:
//parquet.apache.org/docs/file-format/configurations/

[9] Apache Software Foundation. 2018. parquet. https://github.com/apache/arrow-
rs/tree/main/parquet

[10] Apache Software Foundation. 2023. Apache Arrow. https://arrow.apache.org/
[11] Apache Software Foundation. 2023. Apache Arrow Columnar Format - Variable-

size Binary View Layout. https://arrow.apache.org/docs/format/Columnar.
html#variable-size-binary-view-layout

[12] Apache Software Foundation. 2024. Encodings | Parquet. https://parquet.
apache.org/docs/file-format/data-pages/encodings/

[13] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish
Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael Mc-
Creedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis
Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram
Subramanian, and Doug Terry. 2022. Amazon Redshift Re-invented. In Pro-
ceedings of the 2022 International Conference on Management of Data (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 2205–2217.
https://doi.org/10.1145/3514221.3526045 event-place: Philadelphia, PA, USA.

[14] Maximilian Bandle and Jana Giceva. 2021. Database technology for the masses:
sub-operators as first-class entities. Proc. VLDB Endow. 14, 11 (July 2021), 2483–
2490. https://doi.org/10.14778/3476249.3476296 Publisher: VLDB Endowment.

[15] Allison Black, Duncan R. MacCannell, Thomas R. Sibley, and Trevor Bedford.
2020. Ten recommendations for supporting open pathogen genomic analysis in
public health. Nature Medicine 26, 6 (June 2020), 832–841. https://doi.org/10.
1038/s41591-020-0935-z

[16] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random
access string compression. Proc. VLDB Endow. 13, 12 (July 2020), 2649–2661.
https://doi.org/10.14778/3407790.3407851 Publisher: VLDB Endowment.

[17] Daniel Borkmann. 2023. bpf: Fix incorrect verifier pruning due to missing reg-
ister precision taints. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed Publisher:
Linux kernel source tree.

[18] Jay Bosamiya,Wen Shih Lim, and Bryan Parno. 2022. Provably-SafeMultilingual
Software Sandboxing using WebAssembly. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 1975–1992. https:
//www.usenix.org/conference/usenixsecurity22/presentation/bosamiya

[19] Christian Bourjau. 2018. mALICE: An open source framework for analyzing
ALICE’s Open Data. https://github.com/cbourjau/alice-rs/

[20] Bytecode Alliance. 2016. Cranelift. https://cranelift.dev/
[21] Bytecode Alliance. 2019. wasmtime. https://github.com/bytecodealliance/

wasmtime
[22] CERN. 1995. CERN ROOT Format. CERN. https://root.cern/
[23] Surajit Chaudhuri and Gerhard Weikum. 2000. Rethinking Database System

Architecture: Towards a Self-Tuning RISC-Style Database System. In Proceedings

of the 26th International Conference on Very Large Data Bases (VLDB ’00). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1–10.

[24] Chaoran Chen, Sarah Nadeau, Ivan Topolsky, Niko Beerenwinkel, and Tanja
Stadler. 2022. Advancing genomic epidemiology by addressing the bioinformat-
ics bottleneck: Challenges, design principles, and a Swiss example. Epidemics
39 (June 2022), 100576. https://doi.org/10.1016/j.epidem.2022.100576 Place:
Netherlands.

[25] Chaoran Chen, Alexander Taepper, Fabian Engelniederhammer, Jonas Kellerer,
Cornelius Roemer, and Tanja Stadler. 2023. LAPIS is a fast web API for massive
open virus sequencing data. BMC Bioinformatics 24, 1 (June 2023), 232. https:
//doi.org/10.1186/s12859-023-05364-3

[26] ClickHouse. 2022. ClickBench. https://github.com/ClickHouse/ClickBench/
[27] E. F. Codd. 1970. A relational model of data for large shared data banks. Commun.

ACM 13, 6 (June 1970), 377–387. https://doi.org/10.1145/362384.362685 Place:
New York, NY, USA Publisher: Association for Computing Machinery.

[28] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017.
Lightweight Data Compression Algorithms: An Experimental Survey (Experi-
ments and Analyses). In International Conference on Extending Database Tech-
nology. OpenProceedings, Venice, Italy, 72–83. https://api.semanticscholar.org/
CorpusID:1171780

[29] Docker Inc. 2025. Docker: Accelerated Container Application Development.
https://www.docker.com/

[30] DuckDB Foundation. 2025. The DuckDB database system. https://duckdb.org/
[31] Bryan Ford and Russ Cox. 2008. Vx32: lightweight user-level sandboxing on the

x86. In USENIX 2008 Annual Technical Conference (ATC’08). USENIX Association,
USA, 293–306. event-place: Boston, Massachusetts.

[32] Bogdan Vladimir Ghita, Diego G. Tomé, and Peter A. Boncz. 2020. White-
box Compression: Learning and Exploiting Compact Table Representations. In
Conference on Innovative Data Systems Research. https://api.semanticscholar.
org/CorpusID:210706292

[33] Goetz Graefe. 1990. Encapsulation of parallelism in the Volcano query process-
ing system. In Proceedings of the 1990 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’90). Association for Computing Machinery,
New York, NY, USA, 102–111. https://doi.org/10.1145/93597.98720 event-place:
Atlantic City, New Jersey, USA.

[34] Dan Graur, Ingo Müller, Mason Proffitt, Ghislain Fourny, Gordon T. Watts,
and Gustavo Alonso. 2021. Evaluating query languages and systems for high-
energy physics data. Proc. VLDB Endow. 15, 2 (Oct. 2021), 154–168. https:
//doi.org/10.14778/3489496.3489498 Publisher: VLDB Endowment.

[35] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing
the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2017). Association for Computing Machinery, New York, NY, USA, 185–200.
https://doi.org/10.1145/3062341.3062363 event-place: Barcelona, Spain.

[36] Robert Haas. 2012. Built-in JSON data type. https://git.postgresql.org/gitweb/
?p=postgresql.git;a=commit;h=5384a73f98d9829725186a7b65bf4f8adb3cfaf1

[37] Robert Haas. 2021. Allow configurable LZ4 TOAST compression. https:
//git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=bbe0a81db

[38] Dwayne Richard Hipp. 2022. Merge the JSON interface into the core. Add
-> and ->> operators for JSON that are compatible with by MySQL and PG.
https://sqlite.org/src/info/4cbb3e3efeb40cc4

[39] Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran
Shi, and Ugur Cetintemel. 2020. DeepSqueeze: Deep Semantic Compression for
Tabular Data. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1733–1746. https://doi.org/10.1145/3318464.3389734 event-
place: Portland, OR, USA.

[40] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not
So Fast: Analyzing the Performance of WebAssembly vs. Native Code. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 107–120. https://www.usenix.org/conference/atc19/presentation/
jangda

[41] Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and
Michael R. Lyu. 2023. Revealing Performance Issues in Server-Side We-
bAssembly Runtimes Via Differential Testing. In 2023 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 661–672.
https://doi.org/10.1109/ASE56229.2023.00088

[42] Michael Jungmair and Jana Giceva. 2023. Declarative Sub-Operators for Uni-
versal Data Processing. Proc. VLDB Endow. 16, 11 (July 2023), 3461–3474.
https://doi.org/10.14778/3611479.3611539 Publisher: VLDB Endowment.

[43] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything you always wanted to know about compiled
and vectorized queries but were afraid to ask. Proc. VLDB Endow. 11, 13 (Sept.
2018), 2209–2222. https://doi.org/10.14778/3275366.3284966 Publisher: VLDB
Endowment.

[44] Amandeep Khurana and Julien Le Dem. 2018. The Modern Data Architecture:
The Deconstructed Database. login Usenix Mag. 43 (2018), 36–40. https:

https://www.json.org
https://www.man7.org/linux/man-pages/man2/userfaultfd.2.html
https://www.man7.org/linux/man-pages/man2/userfaultfd.2.html
https://github.com/WebAssembly/memory64/
https://github.com/WebAssembly/memory64/
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.48550/ARXIV.2411.13704
https://doi.org/10.14778/3611540.3611544
https://parquet.apache.org/docs/file-format/configurations/
https://parquet.apache.org/docs/file-format/configurations/
https://github.com/apache/arrow-rs/tree/main/parquet
https://github.com/apache/arrow-rs/tree/main/parquet
https://arrow.apache.org/
https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.14778/3476249.3476296
https://doi.org/10.1038/s41591-020-0935-z
https://doi.org/10.1038/s41591-020-0935-z
https://doi.org/10.14778/3407790.3407851
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://github.com/cbourjau/alice-rs/
https://cranelift.dev/
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://root.cern/
https://doi.org/10.1016/j.epidem.2022.100576
https://doi.org/10.1186/s12859-023-05364-3
https://doi.org/10.1186/s12859-023-05364-3
https://github.com/ClickHouse/ClickBench/
https://doi.org/10.1145/362384.362685
https://api.semanticscholar.org/CorpusID:1171780
https://api.semanticscholar.org/CorpusID:1171780
https://www.docker.com/
https://duckdb.org/
https://api.semanticscholar.org/CorpusID:210706292
https://api.semanticscholar.org/CorpusID:210706292
https://doi.org/10.1145/93597.98720
https://doi.org/10.14778/3489496.3489498
https://doi.org/10.14778/3489496.3489498
https://doi.org/10.1145/3062341.3062363
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5384a73f98d9829725186a7b65bf4f8adb3cfaf1
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5384a73f98d9829725186a7b65bf4f8adb3cfaf1
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=bbe0a81db
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=bbe0a81db
https://sqlite.org/src/info/4cbb3e3efeb40cc4
https://doi.org/10.1145/3318464.3389734
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
https://doi.org/10.1109/ASE56229.2023.00088
https://doi.org/10.14778/3611479.3611539
https://doi.org/10.14778/3275366.3284966
https://api.semanticscholar.org/CorpusID:56172282


//api.semanticscholar.org/CorpusID:56172282
[45] Sergey Knyazev, Karishma Chhugani, Varuni Sarwal, Ram Ayyala, Harman

Singh, Smruthi Karthikeyan, Dhrithi Deshpande, Pelin Icer Baykal, Zoia Co-
marova, Angela Lu, Yuri Porozov, Tetyana I. Vasylyeva, Joel O. Wertheim,
Braden T. Tierney, Charles Y. Chiu, Ren Sun, Aiping Wu, Malak S. Abe-
dalthagafi, Victoria M. Pak, Shivashankar H. Nagaraj, Adam L. Smith, Pavel
Skums, Bogdan Pasaniuc, Andrey Komissarov, Christopher E. Mason, Eric Bortz,
Philippe Lemey, Fyodor Kondrashov, Niko Beerenwinkel, Tommy Tsan-Yuk
Lam, Nicholas C. Wu, Alex Zelikovsky, Rob Knight, Keith A. Crandall, and
Serghei Mangul. 2022. Unlocking capacities of genomics for the COVID-19
response and future pandemics. Nature Methods 19, 4 (April 2022), 374–380.
https://doi.org/10.1038/s41592-022-01444-z

[46] Andrei N Kolmogorov. 1963. On tables of random numbers. Sankhyā: The
Indian Journal of Statistics, Series A (1963), 369–376. Publisher: JSTOR.

[47] Kornilios Kourtis, Animesh Kr Trivedi, and Nikolas Ioannou. 2020. Safe and
Efficient Remote Application Code Execution on Disaggregated NVM Storage
with eBPF. ArXiv abs/2002.11528 (2020). https://api.semanticscholar.org/
CorpusID:211506592

[48] Laurens Kuiper. 2025. Query Engines: Gatekeepers of the Parquet File Format.
https://duckdb.org/2025/01/22/parquet-encodings.html

[49] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2 (June 2023), 118:1–118:26. https://doi.org/10.1145/3589263
Place: New York, NY, USA Publisher: Association for Computing Machinery.

[50] Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Mehmet Ozan
Kabak, Liang-Chi Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion:
A Fast, Embeddable, Modular Analytic Query Engine. In Companion of the
2024 International Conference on Management of Data (SIGMOD/PODS ’24).
Association for Computing Machinery, New York, NY, USA, 5–17. https:
//doi.org/10.1145/3626246.3653368 event-place: Santiago AA, Chile.

[51] Geoff Langdale and Daniel Lemire. 2019. Parsing gigabytes of JSON per second.
VLDB J. 28, 6 (2019), 941–960. https://doi.org/10.1007/S00778-019-00578-5

[52] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Gener-
ation and Optimization, 2004. CGO 2004. IEEE Computer Society, San Jose, CA,
USA, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[53] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’14). Association for Computing Machinery, New
York, NY, USA, 743–754. https://doi.org/10.1145/2588555.2610507 event-place:
Snowbird, Utah, USA.

[54] D. Lemire and L. Boytsov. 2015. Decoding billions of integers
per second through vectorization. Software: Practice and Experi-
ence 45, 1 (2015), 1–29. https://doi.org/10.1002/spe.2203 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2203.

[55] Justin Levandoski, Garrett Casto, Mingge Deng, Rushabh Desai, Pavan Edara,
Thibaud Hottelier, Amir Hormati, Anoop Johnson, Jeff Johnson, Dawid
Kurzyniec, SamMcVeety, Prem Ramanathan, Gaurav Saxena, Vidya Shanmugan,
and Yuri Volobuev. 2024. BigLake: BigQuery’s Evolution toward a Multi-Cloud
Lakehouse. In Companion of the 2024 International Conference on Management
of Data (SIGMOD/PODS ’24). Association for Computing Machinery, New York,
NY, USA, 334–346. https://doi.org/10.1145/3626246.3653388 event-place: <conf-
loc>, <city>Santiago AA</city>, <country>Chile</country>, </conf-loc>.

[56] LHCb collaboration (2017). 2011. Matter Antimatter Differences (B meson
decays to three hadrons) - Data Files. https://doi.org/10.7483/OPENDATA.
LHCB.AOF7.JH09

[57] Hanwen Liu, Mihail Stoian, Alexander van Renen, and Andreas Kipf. 2024.
Corra: Correlation-Aware Column Compression. In Proceedings of Workshops
at the 50th International Conference on Very Large Data Bases, VLDB 2024,
Guangzhou, China, August 26-30, 2024. VLDB.org. https://vldb.org/workshops/
2024/proceedings/CloudDB/clouddb-2.pdf

[58] Xi Lyu, Andreas Kipf, Pascal Pfeil, Dominik Horn, Jana Giceva, and Tim Kraska.
2023. CorBit: Leveraging Correlations for Compressing Bitmap Indexes. In
VLDB Workshops. https://api.semanticscholar.org/CorpusID:261125284

[59] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but
at what cost?. In Proceedings of the 15th USENIX Conference on Hot Topics in
Operating Systems (HOTOS’15). USENIX Association, USA, 14. event-place:
Switzerland.

[60] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2011. Dremel: interactive analysis
of web-scale datasets. Commun. ACM 54, 6 (June 2011), 114–123. https:
//doi.org/10.1145/1953122.1953148 Place: New York, NY, USA Publisher: Asso-
ciation for Computing Machinery.

[61] Microsoft. 2016. Microsoft LSP. https://microsoft.github.io/language-server-
protocol/

[62] Microsoft. 2025. Microsoft SQL Server. https://www.microsoft.com/sql-server

[63] Microsoft Corporation. 2024. JSON data in SQL Server. https:
//learn.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-
server?view=sql-server-ver16

[64] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based Sys-
tem with In-Memory Performance. In Conference on Innovative Data Sys-
tems Research. www.cidrdb.org, Amsterdam, The Netherlands. https://api.
semanticscholar.org/CorpusID:209379505

[65] Oracle. 2013. The Java Virtual Machine Specification. https://docs.oracle.com/
javase/specs/jvms/se7/html/index.html

[66] Manfred Paul. 2021. CVE-2021-3490. https://nvd.nist.gov/vuln/detail/CVE-
2021-3490

[67] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes
McKinney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The
Composable Data Management System Manifesto. Proc. VLDB Endow. 16, 10
(June 2023), 2679–2685. https://doi.org/10.14778/3603581.3603604 Publisher:
VLDB Endowment.

[68] Petr Penzin. 2020. Flexible Vectors Proposal for WebAssembly. https://github.
com/WebAssembly/flexible-vectors

[69] Martin Prammer, Xinyu Zeng, Ruijun Meng, Wes McKinney, Huanchen Zhang,
Andrew Pavlo, and Jignesh M. Patel. 2025. Towards Functional Decomposi-
tion of Storage Formats. In Conference on Innovative Data Systems Research.
www.cidrdb.org, Amsterdam, The Netherlands. https://api.semanticscholar.
org/CorpusID:275548402

[70] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’19). Association for Computing Machinery, New York, NY,
USA, 1981–1984. https://doi.org/10.1145/3299869.3320212 event-place: Ams-
terdam, Netherlands.

[71] Vijayshankar Raman and Garret Swart. 2006. How to wring a table dry: entropy
compression of relations and querying of compressed relations. In Proceedings
of the 32nd International Conference on Very Large Data Bases (VLDB ’06). VLDB
Endowment, 858–869. Place: Seoul, Korea.

[72] Red Hat, Inc. 2017. CVE-2017-15098. https://nvd.nist.gov/vuln/detail/CVE-
2017-15098

[73] Karla Saur, Tara Mirmira, Konstantinos Karanasos, and Jesús Camacho-
Rodríguez. 2022. Containerized execution of UDFs: an experimental evaluation.
Proc. VLDB Endow. 15, 11 (July 2022), 3158–3171. https://doi.org/10.14778/
3551793.3551860 Publisher: VLDB Endowment.

[74] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey
Milovidov. 2024. ClickHouse - Lightning Fast Analytics for Everyone. Proc.
VLDB Endow. 17, 12 (Aug. 2024), 3731–3744. https://doi.org/10.14778/3685800.
3685802 Publisher: VLDB Endowment.

[75] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). USENIX Association, 419–433. https:
//www.usenix.org/conference/atc20/presentation/shillaker

[76] Moritz-Felipe Sichert. 2024. Efficient and Safe Integration of User-Defined Op-
erators into Modern Database Systems. PhD Thesis. Technische Universität
München. https://mediatum.ub.tum.de/1713746

[77] Snowflake. 2025. Introduction to Extern Tables in Snowflake. https://docs.
snowflake.com/en/user-guide/tables-external-intro

[78] Snowflake, Inc. 2025. Introduction to external functions | Snowflake Docu-
mentation. https://docs.snowflake.com/en/sql-reference/external-functions-
introduction

[79] Benedikt Spies and Markus Mock. 2021. An Evaluation of WebAssembly in
Non-Web Environments. In 2021 XLVII Latin American Computing Conference
(CLEI). 1–10. https://doi.org/10.1109/CLEI53233.2021.9640153

[80] Spiral. 2024. vortex. https://github.com/spiraldb/vortex
[81] Mihail Stoian, Alexander van Renen, Jan Kobiolka, Ping-Lin Kuo, Josif Grabocka,

and Andreas Kipf. 2024. Lightweight Correlation-Aware Table Compres-
sion. ArXiv abs/2410.14066 (2024). https://api.semanticscholar.org/CorpusID:
273482434

[82] substrait-io. 2021. Substrait: Cross-Language Serialization for Relational Alge-
bra. https://github.com/substrait-io/substrait

[83] Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024.
Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Pro-
gram. In Proceedings of the Nineteenth European Conference on Computer Systems
(EuroSys ’24). Association for Computing Machinery, New York, NY, USA, 689–
703. https://doi.org/10.1145/3627703.3629562 event-place: Athens, Greece.

[84] The Apache Software Foundation. 2013. Apache Spark. https://spark.apache.
org/

[85] The Apache Software Foundation. 2016. The ORC File Format. https://orc.
apache.org/

[86] The Apache Software Foundation. 2025. The Apache Arrow Flight Format.
https://arrow.apache.org/docs/format/Flight.html

[87] The Apache Software Foundation. 2025. Parquet File Size in Apache Im-
pala. https://impala.apache.org/docs/build/html/topics/impala_parquet_file_
size.html

https://api.semanticscholar.org/CorpusID:56172282
https://doi.org/10.1038/s41592-022-01444-z
https://api.semanticscholar.org/CorpusID:211506592
https://api.semanticscholar.org/CorpusID:211506592
https://duckdb.org/2025/01/22/parquet-encodings.html
https://doi.org/10.1145/3589263
https://doi.org/10.1145/3626246.3653368
https://doi.org/10.1145/3626246.3653368
https://doi.org/10.1007/S00778-019-00578-5
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1002/spe.2203
https://doi.org/10.1145/3626246.3653388
https://doi.org/10.7483/OPENDATA.LHCB.AOF7.JH09
https://doi.org/10.7483/OPENDATA.LHCB.AOF7.JH09
https://vldb.org/workshops/2024/proceedings/CloudDB/clouddb-2.pdf
https://vldb.org/workshops/2024/proceedings/CloudDB/clouddb-2.pdf
https://api.semanticscholar.org/CorpusID:261125284
https://doi.org/10.1145/1953122.1953148
https://doi.org/10.1145/1953122.1953148
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://www.microsoft.com/sql-server
https://learn.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver16
https://api.semanticscholar.org/CorpusID:209379505
https://api.semanticscholar.org/CorpusID:209379505
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://doi.org/10.14778/3603581.3603604
https://github.com/WebAssembly/flexible-vectors
https://github.com/WebAssembly/flexible-vectors
https://api.semanticscholar.org/CorpusID:275548402
https://api.semanticscholar.org/CorpusID:275548402
https://doi.org/10.1145/3299869.3320212
https://nvd.nist.gov/vuln/detail/CVE-2017-15098
https://nvd.nist.gov/vuln/detail/CVE-2017-15098
https://doi.org/10.14778/3551793.3551860
https://doi.org/10.14778/3551793.3551860
https://doi.org/10.14778/3685800.3685802
https://doi.org/10.14778/3685800.3685802
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://mediatum.ub.tum.de/1713746
https://docs.snowflake.com/en/user-guide/tables-external-intro
https://docs.snowflake.com/en/user-guide/tables-external-intro
https://docs.snowflake.com/en/sql-reference/external-functions-introduction
https://docs.snowflake.com/en/sql-reference/external-functions-introduction
https://doi.org/10.1109/CLEI53233.2021.9640153
https://github.com/spiraldb/vortex
https://api.semanticscholar.org/CorpusID:273482434
https://api.semanticscholar.org/CorpusID:273482434
https://github.com/substrait-io/substrait
https://doi.org/10.1145/3627703.3629562
https://spark.apache.org/
https://spark.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://arrow.apache.org/docs/format/Flight.html
https://impala.apache.org/docs/build/html/topics/impala_parquet_file_size.html
https://impala.apache.org/docs/build/html/topics/impala_parquet_file_size.html


[88] The PostgreSQL Global Development Group. 1996-2025. The PostgreSQL Open
Source Relational Database. https://www.postgresql.org/

[89] TileDB, Inc. 2024. TileDB. https://docs.tiledb.com/main/background/
architecture

[90] Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh. 2024.
MemSnap µ Checkpoints: A Data Single Level Store for Fearless Persistence. In
Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 622–638. https://
doi.org/10.1145/3620666.3651334 event-place: <conf-loc>, <city>La Jolla</city>,
<state>CA</state>, <country>USA</country>, </conf-loc>.

[91] Alexa VanHattum, Monica Pardeshi, Chris Fallin, Adrian Sampson, and Fraser
Brown. 2024. Lightweight, Modular Verification for WebAssembly-to-Native
Instruction Selection. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
1 (ASPLOS ’24). Association for ComputingMachinery, New York, NY, USA, 231–
248. https://doi.org/10.1145/3617232.3624862 event-place: <conf-loc>, <city>La
Jolla</city>, <state>CA</state>, <country>USA</country>, </conf-loc>.

[92] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S.
Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira. 2020. Fast Packet
Processing with eBPF and XDP: Concepts, Code, Challenges, and Applications.
ACM Comput. Surv. 53, 1 (Feb. 2020). https://doi.org/10.1145/3371038 Place:
New York, NY, USA Publisher: Association for Computing Machinery.

[93] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh
Nagarakatte. 2023. Verifying the Verifier: eBPF Range Analysis Verification. In
Computer Aided Verification, Constantin Enea and Akash Lal (Eds.). Springer
Nature Switzerland, Cham, 226–251. https://doi.org/10.1007/978-3-031-37709-
9_12

[94] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest@SIGMOD. ACM,
1:1–1:6.

[95] Conrad Watt. 2018. Mechanising and verifying the WebAssembly specification.
In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (CPP 2018). Association for Computing Machinery, New York,
NY, USA, 53–65. https://doi.org/10.1145/3167082 event-place: Los Angeles,
CA, USA.

[96] Andrew Werner. 2023. [BUG] verifier escape with iteration helpers
(bpf_loop, ...). https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=
6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/ Publisher: Linux kernel
mailing list.

[97] Yutian Yan, Tengfei Tu, Lijian Zhao, Yuchen Zhou, and Weihang Wang. 2021.
Understanding the performance of webassembly applications. In Proceedings
of the 21st ACM Internet Measurement Conference (IMC ’21). Association for
Computing Machinery, New York, NY, USA, 533–549. https://doi.org/10.1145/
3487552.3487827 event-place: Virtual Event.

[98] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, USA, 2. event-place:
San Jose, CA.

[99] Matei A. Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing
and Advanced Analytics. In Conference on Innovative Data Systems Research.
https://api.semanticscholar.org/CorpusID:229576171

[100] Zhan Zhang. 2015. SPARK-2883 Spark Support for ORCFile format. https:
//issues.apache.org/jira/browse/SPARK-2883

[101] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan
Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf
Cidon. 2022. XRP: In-Kernel Storage Functions with eBPF. In 16th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 22). USENIX As-
sociation, Carlsbad, CA, 375–393. https://www.usenix.org/conference/osdi22/
presentation/zhong

[102] Eduard Zingerman. 2024. [PATCH 6.6.y 00/17] bpf: backport of iterator and
callback handling fixes. https://lore.kernel.org/all/20240125001554.25287-1-
eddyz87@gmail.com/ Publisher: Linux kernel mailing list.

https://www.postgresql.org/
https://docs.tiledb.com/main/background/architecture
https://docs.tiledb.com/main/background/architecture
https://doi.org/10.1145/3620666.3651334
https://doi.org/10.1145/3620666.3651334
https://doi.org/10.1145/3617232.3624862
https://doi.org/10.1145/3371038
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1145/3167082
https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://api.semanticscholar.org/CorpusID:229576171
https://issues.apache.org/jira/browse/SPARK-2883
https://issues.apache.org/jira/browse/SPARK-2883
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong
https://lore.kernel.org/all/20240125001554.25287-1-eddyz87@gmail.com/
https://lore.kernel.org/all/20240125001554.25287-1-eddyz87@gmail.com/

	Abstract
	1 Introduction
	2 Problem Space & Related Work
	2.1 Approach: Native Code
	2.2 Approach: Extensions
	2.3 Approach: Isolated Extensions
	2.4 Potential Approach: Static Verification

	3 AnyBlox
	3.1 WebAssembly Decoders
	3.2 Output Format
	3.3 Metadata
	3.4 [R3.D6]Host Communication
	3.5 Decoder API
	3.6 Runtime
	3.7 Discussion

	4 Integration
	4.1 Internal Data Representation
	4.2 Language Interoperability
	4.3 Concurrent Scans
	4.4 Embedded AnyBlox: Future-Proof Parquet
	4.5 Embedded AnyBlox: Statistics & Pushdown
	4.6 Standalone AnyBlox: Statistics & Pushdown

	5 Evaluation
	5.1 Did we solve the NM problem?
	5.2 Vortex Native vs. Vortex in AnyBlox
	5.3 DuckDB Performance
	5.4 Spark Performance
	5.5 Decoder Microbenchmarks

	6 Summary and Outlook
	Acknowledgments
	References

